ReCycle: Pipeline Adaptation to Tolerate Process
Variation ~

Abhishek Tiwari, Smruti R. Sarangi and Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://fiacoma.cs.uiuc.edu
{atiwari,sarangi,torrellas} @cs.uiuc.edu

Abstract to meet timing, forcing the whole processor to operate at a lower
gequency than nominal. Variation is already forcing designers to

Process variation affects processor pipelines by making somem lov quard banding. and the marains are getting wider as tech
stages slower and others faster, therefore exacerbating pipeline un- ploy g 9: 9 9 9 )

balance. This reduces the frequency attainable by the pipeline. T%ology scales. Bowmaet al. suggest that variation may wipe out

improve performance, this paper propoBeyclean architectural the performgn_ce gans of_a full teghnolpgy genergtlon [6].

. : . . Careful timing design is especially important in state-of-the-art
framework that comprehensively applies cycle time stealing to the rocessor pielines. The choices of what stages to have and what
pipeline — transferring the time slack of the faster stages to thd SSOr pIpelines. ices of what stages V' W

. . . . clock period they will all share are affected by many considera-
slow ones by skewing clock arrival times to latching elements after . . . .
y g 9 ions [21, 23, 42]. With process variation, the logic paths in some

fabrication. As a result, the pipeline can be clocked with a period[ tages become slower and those in other stages become faster after
close to theaveragestage delay rather than the longest one. In ad->'a9es SIoW el stag s

dition, ReCycle’s frequency gains are enhanced Witinor stages, fabrication, exacerbating pipeline unbalance and reducing the fre-

which are empty stages added to "donate” slack to the slow Stagegye(;]lf?/rs;iigitz:sniytghtig Ip:::Zreél roblem of process variation can
Finally, ReCycle can also convert slack into power reductions. 9 P P

For a 17FO4 pipeline, ReCycle increases the frequency by 120}(:])e broadly classified into circuit-level and architecture-level tech-

and the application performance by 9% on average. Combining rdliques. At the circuit level, there are multiple proposed techniques,

. . . including adaptive body biasing (ABB) [45] and adaptive suppl
Cycle anq donor stages delivers improvements of 36% in frequencgOltage %ASV)pscaIing [3;] Sucﬁ t(echn)iq[uei are effec[iive in n?gn);/
and 15% in performance on average, completely reclaiming the peréases although they add. complexity to the manufacturing process
formanc_e losses due_ 0 varlathn. and have other side effects. Specifically, boosting frequency with
Categories and Subject Descriptors:B.8.0 [Hardware]: Perfor-  ABp increases leakage power and doing it with ASV can have a

mance and ReliabilityGeneral damaging effect on lifetime reliability.

General Terms: Performance, Design Architecture-level techniques are complementary to circuit-level

Keywords: Pipeline, Process Variation, Clock Skew ones. However, most of the ones proposed so far target a small
number of functional blocks, namely the register file and execute

1. Introduction units [31] and the data caches [34]. Other techniques have focused

on redesigning the latching elements [17, 46]. These techniques

Process variation is a major obstacle to the continued scaling dfkely involve a substantial design effort and hardware overhead.
integrated-circuit technology in the sub-45 nm regime. As transis- In this paper, we propose to tolerate the effect of process vari-
tor dimensions continue to shrink, it becomes successively harder tation on processor pipelines with an architecture-level technique
precisely control the fabrication process. As a result, different tranthat: (i) does not adversely affect leakage or hardware reliabiliy,
sistors in the same chip exhibit different values of parameters suctii) is globally applicable to all subsystems in a pipeline, and (iii)
as threshold voltage or effective channel length. These parameteias a negligible hardware overhead. It is based on the comprehen-
in turn determine the switching speed and leakage of transistorssive application of cycle time stealing [4], where the time slack of
which are also subject to substantial fluctuation. the faster stages in the pipeline is transferred to the slower ones by

Variation in transistor switching speed is visible at the archi- skewing the clock arrival times to latching elements. As a result,
tectural level when it makes some unit in the processor too slovthe pipeline can be clocked with a period close toaheragestage
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ReCycle to push the slack of non-critical pipeline loops to their  As an example, Figure 1(a) shows a simplified version of the Al-
feedback paths, and then consume it there to reduce wire powegrha 21264 pipeline [28] that we use to demonstrate ReCycle. The
or to improve wire routability. Finally, ReCycle can also be usedfigure does not show the physical structure of the pipeline. Rather, it
to salvage chips that would otherwise be rejected due to variationshows a logical structure. Each long box represents a logical stage,
induced hold-time failures. while short boxes are pipeline registers between them. Some logi-
Our evaluation compares variation-affected pipelines withoutcal stages are broken down into multiple physical stages, as shown
and with ReCycle. On average for a 17FO4 pipeline, ReCycle inwith dashed lines. Lines between logical stages represent commu-
creases the frequency by 12%, thereby recovering 63% of the frenication links.
quency lost to variation, and speeding up our applications by 9%. 9
Combining ReCycle and donor stages is even more effective. Com 2 4 ‘
pared to the pipeline without ReCycle, it increases the frequenc ~|intMap [+ ]+ ntQ ]+ [-lintReg]
by 36% and the performance by 15% on average, performing eve
better than a pipeline without process variation. Finally, ReCycle 10
also saves 7-15% of the power in feedback paths.
This paper is organized as follows. Section 2 gives a back
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ground; Sections 3, 4, and 5 present ReCycle’s ideas, uses, and IF 1 7
implementation, respectively. Sections 6 and 7 evaluate ReCycle; meﬁ
and Section 8 discusses related work. FPAdd

-[FPMap|~{ | -[ FPQ || [-[FPReg/ | FPMul
2. Background 3 ‘ 5 ‘ .

8
2.1. Pipeline Clocking
One of the most challenging tasks in pipeline design is to ensure

(a) Simplified logical pipeline structure.

AT ; N Descripti Fdbk | C t
that the pipeline is clocked correctly. Data propagation delay and ame H escription ‘ Path ‘ omponents H
clock period have to be ;uch that, in_eac_h latch element, the setup—¢gich Dependence between T [ IF, Bpred, 1
(Tsetup) @nd hold Tho1q4) times are maintained. PC and Next PC
Often, it is desired to fit more logic in a pipeline stage than the || Mt Dependence between | 2| IntMap, 2
. . . . rename inst. assigning a renameg:
cycle time would allow. This can be accomplished without chang- [T—p tag and a later one 3 FPMap, 3
ing the pipeline frequency by using a technique calladle Time rename reading the tag
Stealing[4]. With this technique, a stage utilizes a portion of the || 1™ _ pependence between | 4| IntQ.4
time allotted to its successor or predecessor stages. This forcible re-Trp producer inst. and the 5 FPO, 5
moval of time from another stage is typically obtained by adjusting || issue wakeup of a consumer
the clock arrival times Int ALU Forwarding 6 IntExec, 6
. e . . FPAdd from execute 7 FPAdd, 7
Consider a pipeline stage that is preceded by flip-flop (6t FPMul to execute 8 FPMUI, 8
initial) and followed by flip-flop FF (for final). The stage can steal Btanchd 'l\)/lispfﬁdicted o :F’Spfe‘é’ IntMap
. B . . misprea. ranc ntQ, IntReg,
time from its successor §tage by.delaylng thg clocklng.qf Bya IntExec, 9
certain time or skew ;. Similarly, it can steal time from its prede- Intload 10 | IntQ, LdStU,
cessor stage by changing the clocking of, Bl a skews; that is misspecul || Load miss Dcache, 10
. I . d t ch th le ti FP load replay 11 FPQ, LdStU,
negative. In all cases, since we do not change the cycle time, one|| misspecul Dcache, 11
or more stages have to have at least as much slack as the amount Load Forwarding from load IntExec, 9, IF, Bpred,
stolen forward to integer execute 12 IntMap, IntQ, LdStU,
) Dcache, 12

Under cycle time stealing, the setup and hold constraints still
have to be satisfied. Assume that the data propagation delay in the
stage isT,.1a, and the pipeline’s clock period ic». The data Figure 1: Simplified version of the Alpha 21264 pipeline used to
generated at FFby a clock edge must arrive at Ffo later than ~ demonstrate ReCycle: logical pipeline structure (a) and pipeline
the setup time before the arrival of the next clock edge at(Eua-  100ps (b).
tion 1). Moreover, the data generated at Bl a clock edge must
arrive at Fi no sooner than the hold time after the arrival of the
clock edge at FF (Equation 2).

(b) Pipeline loops.

The figure depicts the front-end stages and then, from top to
bottom, the stages in the integer datapath, load-store unit and cache,
and floating-point datapath. While the real processor has more com-

i + Taetay + Tserup < Top + 0y (1)  Munication links, we only show those that we consider most impor-
tant or most time critical. For example, we do not show the write
0i + Tdetay > 0f + Thotd 2) back links, since write back is less time critical. The feedback paths
are labeled.

2.2. Pipeline Loops Figure 1(b) describes the pipeline loops in the simplified
Pipeline loops are communication loops that appear when th@ipeline. The first two columns name and describe, respectively,

result of one stage is needed in the same or an earlier stage of thige loop. The next two columns show the feedback path that creates

pipeline [5, 10]. Loops are caused by data, control, or structurathe loop and the components of the loop.

hazards. A loop is typically composed of one or more pipeline  Note that our loops are not exactly the same as those in [5, 10].

stages and a feedback path that connects the end stage to the beere, we examine a more complicated pipeline, and have not shown

gin stage.



all the communication links. In particular, we only show the feed- each pipeline stage is difficult becaudgp is design-specific and
back paths that we consider most important. For example, we do natot publicly available for a design. Consequently, we assume that
show all the forwarding paths. While we will base our analysis oncritical paths are distributed in a spatially-uniform manner on the
this simplified pipeline, ReCycle is general enough to be applicablgrocessor layout — except in the L2, whose paths we assume never
to more complicated pipelines. affect the cycle time. From the layout area of each pipeline stage
and Bowmarnet al’s estimate that a high-performance processor

) e ) chip at our technology node has about 10,000 critical paths [6], we
While process variation exists at several levels, we focus Onyetermine the critical paths in each stage. The slowest critical path

Within-Die (WID) variation, which is caused by boslystematief- i, 4 stage determines the frequency of the stage; the slowest stage
fects due to lithographic irregularities arahdomeffects primarily  jatermines the pipeline frequency.

due to varying dopant concentrations [43]. Systematic variation ex-
hibits strong spatial correlation — structures that are close togethegl Pipeline Adaptation Wlth ReCyCIe
are likely to have similar values — while random variation does not.

Two important process parameters affected by variation are thg 1. Main Idea
threshold voltagel(;) and the effective channel lengthdy ;). Vari-
ation of these parameters directly affects a gate’s delgy, (as
given by the alpha-power model [38]:

2.3. Process Variation and Its Impact

To understand the idea behind ReCycle, consider the pipeline of
Figure 2(a) and call’; the time taken to perform the work in stage
i. For simplicity, in the absence of process variation, we assume
LessVaa thatT; is the same for all and, therefore, the pipeline’s period is
Ty (Vaa = Vi)™ () Tep = Ty, Vi. When variation sets in, it slows down some stages
) while it speeds up others. As shown in Figure 2(a), the resulting

wherey is the carrier mobilityV/44 is the supply voltage, andis ~ unbalanced pipeline has to be clocked with a longer pefiog =

usually1.3. Both . andV; are a function of the temperatuife Mazx(T3), Vi.

We treat random and systematic variation separately. We model Period
the systematic variation df; with a multivariate normal distribu- e | R R 7|
tion with a specific correlation structure [43]. It is characterized byVvariation | ! forali
three parametergz, osys, and¢. Specifically, we divide the chip ‘W‘ ‘
into a grid with 1M cells. Each cell takes on a single valué/pas sf”ec‘ FREN |
given by a multivariate normal distribution with parametgrand Variation % !
osys- Along with this, V; is spatially correlated. Pincline reri

We assume that the correlation is isotropic and independent oﬁﬂe_r _ ‘ ‘ | } } } | Max(Ti)
position [47]. This means that the correlation between two points}’@;‘;‘g’é‘ycle) 7 REN s EX RET
Z andy in the grid depends on the distance between them and noptipeline
on the direction or position. Consequently, we express the COITenfter — { — { Avg(T )
lation function of V;(£) and Vi(v) asp(r), wherer = |Z — g. Efvﬁv‘:;ﬁ“"” IF "REN © IS EX ° RET '
By definition, p(0)=1 (i.e., totally correlated). We also g&to)=0 ReCycle)

(i.e., totally uncorrelated). We then assume #(ad changes with @

as per the Spherical distribution [12]. In the Spherical distribution,

p(r) decreases from 1 to 0 smoothly and reaches 0 at a disfance ¢, 0

calledrange Intuitively, this means that at distange there is no Initial

significant correlation between thg of two transistors. This ap- <o

proach matches empirical data obtained by Friedeéal. [19]. ¢

is given as a fraction of the chip’s width. glock to
Random variation o¥; occurs at a much finer granularity than  Register

systematic variation: it occurs at the level of individual transistors. (N Recyele)
We model it as an uncorrelated normal distribution with .4 and gi'r?;k to
azero mean. Register !
L.y is modeled likeV; with a differentu, oy s, ando,.qnaq but (F:"e"(‘:hyde) T oew
the samep. (b)

From theV; and L. variation, we compute th&, variation  Figure 2: Effect of process variation on pipelines (a) and skewing
using Equation 3. We then use the critical path model of Bow-3 clock signal (b).

manet al. [6] to estimate the frequency supported by each pipeline ] ) ) )
stage. This model takes the number of gatesp) in a critical With ReCycle, we comprehensively apply cycle time stealing
path and the number of critical patha/dp) in a structure, and to correct this variation-induced pipeline unbalance. The resulting
computes the probability distribution of the longest critical path clock period of the pipeline ifcp = Average(T:), Vi. This pe-
delay (nax{Tcp}) in the structure. This is the path that deter- riod can pgtenpally be similar to that of the no-variation pipeline.
mines the maximum frequency of the structure, which we set td®S Shown in Figure 2(a), the slow stages get more than a clock pe-

be1/ max{Tcp}. riod to propagate their signal, at the expense of faster stages that
For simplicity, we model a critical path asp FO4 gates con-  transfer their slack. o
nected by very short wires — whergyp is the useful logic depth With this approach, we do not need to change the pipeline struc-

of a pipeline stage. Unfortunately, accurately estimathag for ~ ture, pipeline depth, or the inherent switching speed of transistors.



Figure 2(b) depicts the timing diagram for a slow stage, showing thés shown in Figure 3, where the edge values are additive to the node
clock signal to its initial pipeline register and to its final register (the values. We represent the whole pipeline as a graph in this way.
latter without and with ReCycle). Data propagation in the stage caWith this representation, we can solve the problem of finding the
take a range of delay®min, Dmaz), depending on which path it optimal skew assignment using a shortest-paths algorithm proposed
uses. This range is shown as a shaded cone. Without ReCycle, tig Albrechtet al.[3].
figure shows that the signal may take too long to be latched by the

final register. Thold — Dmin
With ReCycle, the clock of the final register is delayedhye .. 5. @ 5
Tskew IS chosen so that, even if the signal takes., it reaches ! f

the final register early enough to satisfy the setup tifig.(,) Drnaxt Tsetup ™ TP
(Figure 2(b)). Since the clock period is smaller th@p,,., two
signals can simultaneously exist in the logic of one stage in a wave-
pipelined manner [11]. This can be seen by the fact that the cones of This algorithm runs in worst-case asymptotic time O(NumEdges
two signals overlap in time. In addition, the minimum dely,;, x NumNodes + NumNodés< log(NumNodes)) and is much faster
has to be long enough so that the hold tirfig{«) of the final reg-  in practice. To determine an upper bound on the execution time of
ister is satisfied (Figure 2(b)). this algorithm, let us consider the Bellman-Ford algorithm (BF),
In general, we will skew the clocks of both the initial and final which is a less efficient shortest-paths algorithm. An invocation of
registers of the stage. As per Section 2.1, we call such skews the BF algorithm iterates over all the nodes in the graph. In each
anddy, respectively. Consequentl¥xe., in Figure 2(b) isd#-0;. iteration, it relaxes all graph edges. Relaxing an edge involves 3
In a slow staged; > J;; in a fast oned; < 6;. For ReCycle to  loads, 2 integer ALU operations, and 1 store. Consequently, a BF
work, all the stages in the pipeline have to satisfy the setup and holthvocation involves 4 NumNodesk NumEdges memory accesses
constraints of Equations 1 and 2 which, expressed interms,of,  and 2<NumNodescNumEdges integer ALU operations. Since, in

Figure 3: Constraint graph.

andD,, .. can be rewritten as: practice, only 2 calls to BF are required to converge for this type of
problem, the total number of operations is twice that. For our model
8y —0i+Tcp > Dmax + Tsctup (4)  of the Alpha 21264 pipeline (Section 2.2), there are 14 nodes and
26 edges, which brings the total number of memory accesses to
8¢ — 0i < Dimin — Thotd (5)  ~2,900 and integer ALU operations %e1,500. Memory accesses

In a real pipeline, this simple model gets complicated by thehave high locality because Fhey only rgad a}nd write the nodes and
fact that a pipeline is not a single linear chain of stages. Insteactdges. Overall, the execution takes little time. In the rest of the
as shown in Figure 1(a), the pipeline forks to generate subpipeling8@Per, we will refer to Albrechet al's algorithm as the ReCycle
(e.g., the integer and floating-point pipelines) and loops back to pre2/gorithm.

vious stages through feedback paths (e.g., the branch misprediction 1he advantage of using this algorithm is two-fold. First, it
loop). is much faster than conventional linear programming approaches.

With ReCycle, stages can only trade slack if they participate inSecond, it id(_entifies the loop that limits any f_urtherdecrea}%iﬂ,
a common loop As an example, in Figure 1(a), the IntExec and namgly thecritical Ioop. Overall, after applying this algorlthm, we
the Bpred stages can trade slack because they belong to the brarfptain three results: (i) the shortest clock periage that is com-

misprediction loop. However, the IntExec and the FPAdd stage@aﬂble with all the constraints, (ii) the individual clock skéwo
cannot trade slack. apply to each pipeline register, and (jii) the critical pipeline loop.

3.2. Finding the Optimal Period and Skews 3.3. Applying ReCycle

Given an arbitrary pipeline, we would like to find the shortest ~ Recycle applies cycle time stealing [4] in a comprehensive man-
clock periodTe » that we can clock it at, and the set of time skews Ner to compensate for process variation in a pipeline. It relies on
5 that we need to apply to the different pipeline registers to makdunable delay buffers in the clock network that enable the insertion
that possible. The setup and hold constraints of Equations 4 and & intentional skew to the signal that reaches individual pipeline
are linear inequalities. Consequently, the problem of finding the'®disters. We will outline an implementation of such buffers in Sec-
optimal period and skews can be formulated as a linear progranfo" 5.1.

where we are minimizing'cr subject to the setup and hold con- 10 determine the skews to apply, we need to estimate the max-
straints for all the stages in the pipeline. imum (Dima.) and minimum Or.i,) delay of each stage. For a

In this linear program, the unknowns &fe » and the skewss given stage,_thes_e parameters can be a_lpprqximately obtained as fol-
andé ) of the initial and final pipeline registers of each individual '0WSs- Atdesigntime, designers should identify two groups of paths:
stage. Such skews can take positive or negative values. The knowhose that will contain the slowest one and those that will contain

quantities are the delays of the slowest and fastest paths.{ and the fastest one. This can be done with timing analysis tools plus
Dimin) in €ach pipeline stage, and the setup and hold tirfies.(, the addition of a guard band to take into account the effects of the

andTh.i4) of each pipeline register. We will see later hdW,qx expected systematic variation after fabrication — note that random

andD,,;, can be estimated. variation is typically less important, since its effects on the gates
To éblve this linear program, we can use a conventional a1.0f a path tend to cancel each other. In addition, designers should

gorithm, which typically runs in asymptotically exponential time. construct a few BIST vectors that exercise these paths.

Here, instead, we choose to map this problem to a graph, where After fabrication, the processor should be exercised with these

nodes represent pipeline register skews and the directed edges régfST Vectors at a range of frequencies. From when the test fails,

resent the setup and hold constraints. The representation for a staggSigners should be able to identify the actual fastest and slowest



paths under these conditions, ab¢,.. and D,..;... Since the test- Given that we assume that path delays are independent across
ing of each stage can proceed in parallel, characterization of thetages,
entire pipeline can be done quickly. N
Note that the application of ReCycle does not assume that the Fep(x) = P(Top <) = P(Ty <) x ... x P(Ty < )
pipeline stages were completely balanced before variation. In reall-f we call F
ity, pipelines are typically unbalanced. Since ReCycle can leverag
unbalance irrespective of its source, the more unbalance that ex-
ists before variation, the higher the potential benefits of ReCycle. '
In reality, however, some of the unbalance detected at design time Flp(z) =P(Top <z)=F(z) x ... X F(z) = (F(x))N
will have been eliminated by introducing various time-borrowing
circuits in the design. ReCycle is compatible with the existence of In @ pipeline with Recycle, the delay of a stage can be redis-
such circuits, and will still exploit the variation-induced unbalance. tributed to other stages, and the pipeline’s period is given by the
ReCycle can be applied once by the chip manufacturer after th@verage of the stage delays. Specifically, the cumulative distribu-
chip is fabricated. After determining the delays, the manufacturetion function of the pipeline’s clock period is:
runs the algorithm of Section 3.2 to determine the skews, and pro- T+ ... Txn
grams the latter in the delay buffers. The chip is then run at the Fcp(z) = P(Tep <z) = P(T
chosenTcp. Note that operating the chip at lower frequencies is
still possible, since the setup and hold constraints for all pipelineThe last equality used the fact that the averagél afidependent

(z) the cumulative distribution function of the path de-
y in a stage, given that all stages have the same distribution, we

<z)=F(x)

registers would still be satisfied. random variables distributed normally withand o is a random
In addition, we can envision automatically applying ReCycle dy- variable distributed normally with the sameando. N
namically, as chip conditions such as temperature change. Such From these equations, we see thétr(z) = (Fep(z))”,

ability requires embedding circuitry to detect changes in path dewherel¢p(z) = F(z) < 1. This allows us to draw an important
lays, such as ring oscillators, temperature sensors, delay chains e@nclusion: as we add more stages to the pipefi@¢reases), the

flip-flop modifications [1, 15]. Once the delays are known, our algo-Pipeline with ReCycle performexponentiallybetter than the one

rithm of Section 3.2 can determine the optiriialp and the skews ~ Without it — i.e., the relative ability of ReCycle to make timing
very quickly. Specifically, as indicated in Section 3.2, our algorithmimproves exponentially with pipeline depth.

requires~4,400 basic operations for our model of the Alpha 212644 2 Adding Donor Stages

pipeline — which can be performed in about the same number of

cycles A second use of ReCycle is to increase the frequency of a

pipeline further by addindponor pipeline stages. A donor stage
. is an empty stage that is added to the critical loop of the pipeline

4. USIﬂg ReCyCIe — i.e., the loop that determines the cycle time of the pipeline. The
ReCycle has several architectural uses that we outline here. ~ donor stage introduces additional slack that it “donates” to the other
4.1. Enabling High-Frequency, Long Pipelines iltsgkezler:ighde critical loop. This enables a reduction in the pipeline’s

The basic use of ReCycle is to enable high-frequency, long Donor stages are supported by including an additional pipeline
pipelines. With process variation, the transistors in one or SEVEI'aJegister immedia’[e|y after the output pipe”ne register of some
stages of a long pipeline are likely to be significantly slower thanpipeline stages. We call such regist&msplicates In normal op-
those in other stages. Without ReCycle, these stages directly limigration, a duplicate register is transparent and, as described in [33],
the pipeline frequency; with ReCycle, the delay in these stages iftroduces minor time overhead. To insert a donor stage after a
averaged out with that of fast stages. With more stages in longtage, we enable its duplicate register. In our experiments, we add
pipelines, the variations in stage delays average out more effegne duplicate register to each of the 13 logical pipeline stages in the
tively. Alpha pipeline of Figure 1(a). In this way, we ensure we cover all

While Section 7.2 presents simulations that support this conjecthe pipeline loops.
ture, this section introduces a simple, intuitive analytical model that  Adding an extra stage to the pipeline incurs an IPC penalty, so
gives insight into this issue. Specifically, consider a linear pipelingit must be carefully done to deliver a net positive performance im-
with N stages. Fothis model onlyassume that (i) in each pipeline provement. To select what donor stage(s) to add, we need to have
stage, all paths have the same delay, (i) across stages, such delayisvay of measuring their individual impact on the IPC of the ap-
uncorrelated, and (III) the delay is normally distributed with mean p|ications. Then, we choose the one(s) that deliver the highest per-
p and standard deviation. Moreover, for simplicity, assume also formance. The selection algorithm that we use is called the Donor
thatTsetup andThoq are zero. algorithm.

Denote the path delays in each stageZas 1o, ..., Tn. The Donor algorithm proceeds as follows. Given an individual
The cumulative distribution function of the pipeline’s clock period pipeline, we run the ReCycle algorithm to identify the critical loop.
(For(z)) is the probability that the pipeline can cycle with a period Then, we select one duplicate register from the critical loop and cre-

smaller than or equal to a given valuB((cp < x)). ate a donor stage, rerun the ReCycle algorithm to set the new time
For a pipeline without ReCycle, such cumulative distribution skews and clock period, and measure the IPC. We repeat this pro-
function is: cess for all the duplicate registers in the loop, one at a time. The
donor stage that results in the highest performance is accepted. Af-

Fep(z)=P(Tcp <z)=P(T1 <zn...NTy <) ter this, we run the ReCycle algorithm again to identify the new

critical loop and repeat the process on this loop. This iterative pro-
cess can be repeated until the pipeline reaches the power limit.



The Donor algorithm can be run statically at the manufacturer's By accumulating the slacks in the feedback paths, we can per-
site once or dynamically at runtime many times. In the former caseform the following two optimizations.
the manufacturer has a representative workload, and makes eaﬁh&l. Power Reduction

decision in the algorithm based on the impact on the performance ) ) )
of the workload. With optimal repeater design, about 50% of the power in a feed-

If the Donor algorithm is run dynamically, we rely on a phase back path is dissipated_in the repeat'ers [26]. Eliminating repeaters
detector and predictor (e.g., [40]) to detect phases in the running’OUIGI save power, but it would aI502 increase the delay of the feed-
application. At the beginning of each new phase, the system run "?‘Ck path, since a wire delayls= ki”, wherel is the length of the
the whole algorithm to decide what donor stages to add. The algo¥ire without repeaters. Consequently, we propose to save power by
rithm overhead is tolerable because application phases are long _eliminating as many repeaters as it takes to consume all the slack in
the average phase is typically over 100ms. Moreover, during th&he feedback path.
period needed to profile the IPC of a given pipeline configuration e énvision an environment where the manufacturer, after mea-
(e.g.,~10,000 cycles), the application is still running. suring thg effef:t of process variation on a particular pipeline, could

Note, however, that at every step in the Donor algorithm that Weel!mlnate individual repeaters from feeqlback paths to save power. In
want to change the clock skews in the pipeline, we need to wait untifiS ¢ase, we would proceed by removing one repeater at a time, se-
the pipeline drains. Consequently, such operation is as expensive §£ting first repeaters between adjacent shortest wire segients (

a costly branch misprediction. To reduce overheads, since prografhWe assume a wire with repeaters designed for optimal total delay,
phases tend to repeat, we envision that, after the system selects ¢ delay through a repeater is equal to the delay through a wire
skews, period, and donor(s) for a new phase, it saves them in a tabfegment [22]. Consequently, eliminating one repeater increases the
The data in the table will be reused if the phase is seen again in tHaelay from 2 tok(2L,)?, which iskiZ.

future. Moreover, as an option, we may decide to stop after we havg.3.2. Improved Routability

added one or two donor stages. The slack of the feedback paths can instead be used to ease wire

Supﬁortir_]g tlhe qbilitly to add_dono::stages nelcessarilyd(_:omprI]i-routing during the layout stage of pipeline design. Specifically, we
cates the pipeline implementation. For example, extending the, give the routing tool more flexibility to either lengthen the wires

.”“”?ber Of. cycles_ taken by a functional unit introduces complex-or put them in slower metal layers. Unfortunately, the routing stage
ity in the instruction scheduler. We are not aware of any work.

. ) . ~ "is pre-fabrication and, therefore, we do not know the exact slack
on systematically managing variable numbers of cycles for IOg'calhat will be available for each feedback path after fabrication. Con-

pipeline stages — although some restricted schemes have been rs.“'té'quently, the amount of leeway given to the routing tool has to be

cently proposed [34] (Section 8). We plan to target this problem iny,,sqq o statistical estimates. We can use heuristics such as giving

our future work. leeway only to the feedback paths of loops that are long — since

4.3. Pushing Slack to Feedback Paths they are unlikely to be critical because they can collect slack from
A third use of ReCycle is to push the slack of non-critical loops Many stages — and giving no leeway to the feedback paths of the
to the loops’ feedback paths. Such slack can then be used to ré20PS that are very short —since one of them is likely to be the crit-
duce power or to improve wire routability. To see why, recall thatI€@!100p. Inany case, even if for a particular pipeline, a loop whose
the pipeline model that we are using (Section 2.2) models loops a§€dback path was routed suboptimally ends up being the critical
sets of stages with feedback paths. The latter are abstracted aw!gPP: We have not hurt correctness: ReCycle will simply choose a
as one-cycle stages of simply wires with repeaters. Repeaters apdghly longer clock period than it would have chosen otherwise.
typically inverters that, by interrupting long wires, reduce the total e lack the infrastructure to properly evaluate this optimization.
wire delay [22]. However, discussions Wlth Synopsys deS|gqers sugge.st that the lee-
Two loops in a pipeline can be disjoint or overlapping. For ex-Way that ReCycle provides would ease the job of routing the feed-
ample, Figure 4 shows two overlapping loops from Figure 1(a): theP@ck paths of the pipeline.
branch misprediction one and the integer load misspeculation one4.4. Salvaging Chips Rejected Due to Hold Violations

<R "a ﬁ A final use of ReCycle is to salvage chips that would otherwise

be rejected due to variation-induced hold-time failures. This is a

LH—{ F FH—‘ BPredPH%IntMap IntQ %’5 IntExec special case of ReCycle’s use of cycle time stealing to improve
pipelines after fabrication. However, while correcting setup vi-

R: Repeater @ I:PH—!:I—H» olations (violations of Equation 4) can be accomplished through
(1) Branch misprediction loop LdStU U Dcache other, non-ReCycle techniques, correcting hold violations (viola-
(2 Load misspeculation loop N; ?& tions of Equation 5) after fabrication with other techiques is harder.

Specifically, a setup-time problem can be corrected by increasing
the pipeline’s clock period. However, correcting a hold-time prob-
In all the pipeline loops but the critical one, we use ReCycle tolem after fabrication can be done only with trickier techniques such
push all the slack in the loop to its feedback path. This does no@s slowing down critical paths by decreasing the voltage — with an
affect the cycle time. Note that a stage that belongs to multipleadverse effect on noise margins. As a result, chips with hold-time
loops has a special property: its slack is transferred to the feedbadkoblems typically end up being discarded.
paths ofall the loops it belongs to. For example, in Figure 4, the ~ The ReCycle framework seamlessly fixes pipelines with hold
slack in thelntQ stage is passed simultaneously to both feedbacKailures. Referring to Equation 5, a hold failure makes the right side
paths. negative for some pipeline stage, but ReCycle can make the left side
negative as well. Running the ReCycle algorithm of Section 3.2

Figure 4: Example of overlapping loops.
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Figure 5: Skewing the clock signal: clock distribution network (a) and circuitry to change the delay of the signal (b).

will compute the optimal register skews for all stages to make suclported, when the currently running application enters a new phase

a pipeline reusable. (Section 4.2). In the former case, the SMI is generated by sensors
. that detect when path delays change, such as a temperature sensor.
5. Implementat|()n Issues In the latter case, the SMI is generated by a phase detector and pre-

dictor, such as the hardware unit proposed by Shervebadi [40].
ReCycle has three components: tunable delay buffers, the soft-

ware system manager, and duplicate registers. In addition, it caR-3- Duplicate Registers

optionally have a phase detector and predictor, and temperature sen- To apply the Donor Stage optimization of Section 4.2, we in-
sors. In this section, we overview their implementation and therclude one duplicate register in eaftdgical pipeline stage — for
show the overall ReCycle system. example, immediately after the output pipeline register of its last
physical stage. By default, these duplicate registers are disabled;
) when one is enabled, it creates a donor stage.

ReCycle uses Tunable Delay Buffers (TDB) in the clock net-  preyious work on variable pipeline-depth implementations
w_ork_ to mtgnnonally _skew the sngnal that re_aches individual g ows how pipeline registers can be made transparent using pass-
pipeline registers. This can be easily done. Figure 5(a) shows gansistor multiplexing structures [33]. In our design, the single-bit
conventional clock network, where the clock signal is distributedgape/gisable signals of all duplicate registers are collected in a
through a multi-level network — usually a balanced H tree. Thegpaia| hardware register called Donor Creation register. Such reg-

. . : S
signal driven by the clock generator is boosted by repeaters ang[t)er is set in privileged mode by the ReCycle SM handler.
buffered in signal buffers — at least once, but often at a few levels

— before driving a local clock grid. A local clock grid clocks a 5-4. Overall ReCycle System
pipeline stage. This multi-level tree is strategically partitioned into  The overall ReCycle system is shown in Figure 6. The figure
zones that follow pipeline-stage boundaries. shows one logical stage comprised of one physical stage. The du-
We replace the last signal buffer at each zonal level in Figure 5(aplicate register of the previous stage (shown in dashed lines) is not
with a TDB, capable of injecting an intentional skew into its clock- enabled, but the one of this stage is.
ing subtree. This can be done by simply adding a circuit to delay
the clock signal, for example as shown in Figure 5(b). A string of
inverters is tapped into at different points to sample the signal at
different intervals, and then a multiplexer is used to select the sig- System Manager

5.1. Tunable Delay Buffers

Temperature | SMI SMI__| Phase Detector
Sensor l l and Predictor

nal with the desired delay. A similar design is used in the Itanium (Software)

clock network [14] — in their case to ensure that all signals reach

the stages with the same skew. | o8 | | o8 | : | o8 | [Tos |
The TDB itself could be subject to variation. This can be DO”F?; ?srteeﬁ“"”

avoided by sizing its transistors larger. AR g Enable

| E

5.2. System Manager e
We propose to implement the ReCycle algorithm in a privileged E

software handler that executes below the operating system like the Lol

System Manager (SM) in Pentium 4 [39]. The ReCycle algorithm Figure 6: Overall ReCycle system.

code and its data structures are stored in the SM RAM. When a

System Management Interrupt (SMI) is generated, the ReCycle SM The hardware overhead of R.eCyclells as follows. For egch log-
handler is invoked. The handler determines the new pipeline regis'-Cal stage, R(_eCycIe adds_a dupllcat_e p|pel|ne_reg|ste_r ar_1d its TDB.
ter skews and programs them into the TDBs. It also determines thé TDB is a signal buffer like those in conventional pipelines aug-

new cycle time. As indicated in Section 3.2, the ReCycle algorithmmemed with a chain of inverters and a multiplexer. Moreover, for

performs about 4,400 basic operations for our pipeline, which takeeach physical pipeline stage, ReCycle augments the existing clock
around 750ns on la 6GHz processor ' signal buffer with a chain of inverters and a multiplexer. Finally, Re-

An SMI can be generated in two cases: when chip ConditionsCycle adds the Donor Creation reglster. Optionally, ReCycle also
es a phase detector and predictor, and temperature sensors. Sec-

such as temperature change (Section 3.3) or, if donor stages are sdﬁ'— o .
P ge ( ) g tlon 6.2 quantifies these resources for the actual pipeline modeled.



6. Evaluation Setup model of Section 2.3. Fo¥;, we sety=150mV at 100°C, and use
. empirical data from Friedbergt al.[19] to seto /1 to 0.09. Follow-
6.1. Architecture Modeled ing [27], we use equal contributions of the systematic and random
We model a 45nm architecture with a processor similar to arcomponents. Consequently;,s /i = Gran/p = \/02/2/n =
Alpha 21264, 64KB L1 I- and D-caches and a 2MB L2 cache.(0.064. Finally, since Friedbergt al.[19] observe that the range of
We estimate a nominal frequency of 6GHz with a supply voltagespatial correlation is around half the length of the chip, we set the
of 1V. We use the simplified version of the Alpha 21264 pipeline default¢ to 0.5.
shown in Figure 1(a). In the figure, labeled boxes represent logi- For L.ss, we use ITRS projections that sktss's o/u design
cal pipeline stages, which are composed of one or more physicahrget to be 0.5 of/;’s o /. Consequently, we use/u = 0.045
pipeline stages. Unlabeled boxes show pipeline registers betweemdoys /i = 0ran/pn = 0.032. Knowing p, o, and¢, we gen-
logical stages. The pipeline registers between the multiple physicadrate chip-widé/; and L. sy maps using the geoR statistical pack-
stages of some logical stages are not shown. age [37] of R [35]. We use a resolution of 1M cells per chip, which
The Alpha 21264 pipeline has a logic depth of approximatelycorresponds to 256K cells for the processor and caches used. Each
17FO4 per pipeline stage [23]. As per [20], we choose the setufndividual experiment isepeated 200 timesising 200 chips. Each
and hold times to be 10% and 4%, respectively, of the nominal cloclchip has different; and L. sy maps generated with the parameters
period. This gives us a nominal period of 18.8FO4 and a setup andescribed. Finally, we ignore variation in wires, in agreement with
hold times of 1.8FO4 and 0.8FO4, respectively. In some expericurrent variation models [24].

ments, we scale the logic depth of the pipeline stages from 17FOé 4. Architecture Simulation Infrastructure

to 6FO4; in all cases, we use the same absolute value of the setup ) )
and hold times. We measure the performance of the architecture of Section 6.1

We take the latencies of the different pipeline structures atvith the SESC cycle-accurate execution-driven simulator [36]. We
17FO4 from [23]. We follow the methodology in [21] in that, as 'Un all t_he SPEC2000 applications except 3 SPECint (eon, perlbmk,
the logic depth of stages decreases, we add extra pipeline stages&gd bzip2) and 4 SPECfp (galgel, facerec, lucas, and fma3d) that
keep the total algorithmic work in the pipeline constant. Finally, we fail to compile correctly. We evaluate each application for 0.6-1.0
are assuming that, before variation, the pipeline stages are balancéllion instructions, after skipping several billion instructions due
This represents the most unfavorable case for ReCycle. to initialization. The simulator is augmented with dynamic power

The feedback path lengths are estimated based on the AlpHacdels from Wattch [7] and CACTI [44].

21264 floorplan scaled down to 45nm. From ITRS projections, we,
use a wire delay of 371ps/mm [25]. 7. Results

6.2. ReCycle Hardware Overhead 7.1. Timing Issues After Applying ReCycle

The pipeline used in this paper (Figure 1(a)) has 23 physical |n any given pipeline, the loop with the longest average stage de-
pipeline stages organized into 13 logical ones. Consequently, as pgiy is the critical one, and limits ReCycle’s ability to further reduce
Section 5.4, ReCycle needs the addition of 13 duplicate pipelinghe pipeline period. In the rest of this paper, we use the term “stage
registers, 13 clock signal buffers connected to the duplicate regisn a loop” to refer to the combination of the loop’s physical stage(s)
ters, 36 inverter chains and multiplexers, one Donor Creation regisand its feedback path(s).
ter and, optionally, one phase detector and predictor, and tempera- Figure 7 shows the fraction of times that each of the loops in
ture sensors. Figure 1(b) is critical for a batch of 200 chips. This figure demon-

The area and power overhead of the duplicate pipeline registersirates the interplay of several factors: the number of logical stages
clock signal buffers, inverter chains, multiplexers, Donor Creationin a loop, the number of physical stages in each logical stage of the
register, and temperature sensors is negligible. Specifically, we 0loop, and the relative number of feedback paths in the loop. A large
serve that the maximum clock skéliixew max that we need per  number of logical stages in a loop induces a better averaging of
stage is 50% of the nominal clock period. This corresponds to 0.&tage delays, since the probability that all logical stages are slow is
x 18.8F04 = 9.4FO4. Using 1FC4 3FO1 from [22], and 1IFO1 = small. More physical stages per logical stage reduces the effective-
4ps at 45nm from [32], we have tHalkew mar = 112.8ps. Thisde-  ness of ReCycle. The reason is that, since all these physical stages
lay can be supplied by 28 basic inverters. Then, the multiplexer caghare the same hardware structure, their critical paths are affected
be controlled by 5 bits. The resulting clock signal buffer with the py the same values of the systematic component of variation. As a
inverter chain, multiplexer, and skew selector consumes negligiblgesult, they contribute with similar delays to the loop. Finally, since
area and power. As a reference, a bigger buffer controlled by 16 bitgires are not subject to variation in our model and, in most cases, a
at 800nm occupies just under 35@ x 150um [13]. Linearly scal-  stage with logic is slowed down due to a slow critical path, having
ing the area to a 45nm design, and adding up the contributions of afelatively more feedback paths in a loop reduces its average delay.
the added buffers, we get a negligible area. Moreover, Chakraborty The figure shows that there are two types of pipeline loops that
et al.[8] find the power overhead of TDBs to be minimal. are unlikely to be critical. One is very short loops, suchiras,

We can use a hardware-based phase detector and predictor Iilﬁgen iissue fpissue andialu. These loops have two stages, in-
the one proposed by Sherwoetlal. [40]. Using CACTI [44], we  cluding one feedback path. The latter is effective at reducing the
estimate that it adds: 0.25% to the processor area. average loop delay. The second type is long loops, sudtifas.

6.3. Modeling Process Variation This.loop he}s 13 stages, which include 2 feedback paths. It is likely
hat it contains some fast stages that reduce the average stage delay.

On the other hand, medium-sized loops that include several
cf)rhysical stages in the same logical stage are often critical. They

N . t

We model a chip with four instances of the processor, L1 and L2
architecture described in Section 6.1 — although only one process
is being used. The chip®; andL. sy maps are generated using the
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Figure 9: Average and maximum time skew inserted by ReCycle
includefetch fomuland others. In these loops, the feedback pathper pipeline register. The skews are shown relative to the stage delay
only has modest impact at reducing the average delay, and the fagt a no-variation pipeline of the same logic depth.
that multiple physical stages are highly correlated opens the door to
unfavorable cases.
For a given pipeline, only one loop is critical, and the rest have
unused timing slack. For the same experiment as in the previous g ®
figure, Figure 8 shows the average slack per stage in each loop. Th O NoVar
data is shown relative to the stage delay of a no-variation pipeline. = ReCycle
The data shows that, in general, the average slack per stage in m Var
a loop tends to increase with the number of stages making up the O‘.l 0ﬂ3 0ﬂ5 oﬁg
loop. This is because more stages tend to produce better averages Range ()
and rgduce the possibility of making the loop critical. We ObserVeFigure 10: Pipeline frequency of the environments considered for
that, in the longest looddfwd), we get an average slack per stage different .
of 25%. The main exception to this trendfétch which has a low
average slack even though it has 5 stages. The reason is that it is
critical for the largest number of pipelines (Figure 7) and, therefore, — NoVar
has no slack in those cases. * --- ReCycle
Finally, we measure the average and maximum time skew that ' var
ReCycle inserts per pipeline register. We show this data as we
change the range from its default 0.5 to higher and lower val-
ues (Figure 9(a)), and as we reduce the useful logic depth of the
pipeline stages from the default 17FO4 to 6FO4 (Figure 9(b)). In
both cases, we show the skews relative to the stage delay of a no-
variation pipeline for the same logic depth of the stages.
The average skew is a measure of the average stage unbal-
ance in the pipeline loops. Figure 9(a) shows that the average
skew increases as we reduge This is because for low, even : : : : : :
short loops observe large changes in systematic variation, which 6 8 10 12 14 16 18
increase unbalance. Similarly, Figure 9(b) shows that the average Useful logic per stage(FO4)
skew increases as we decrease the logic depth. The reason is thiigure 11: Pipeline frequency of the environments considered for
for shorter stages, the random component of the variation is mordifferent useful logic depths per pipeline stage.
prominent, increasing the unbalance. Finally, both figures show that i . o
the maximum skews are much higher than the average ones. For ex- | "€ figure shows that, across differenthe pipeline frequency
ample, for 17FO4 and= 0.1, the maximum skew reaches 0.5. of NoVarls_ 19-22% higher than that M’ar This would be the fre_—
) quency gain if we could completely eliminate the effect of variation.
7.2. Frequency After Applying ReCycle On the other hand, the frequency of Recycle is about 12-13% higher
We now consider the impact of ReCycle on the pipeline fre-thanVar's. This means that ReCycle is able to recover around 60%
qguency. We compare three environments, namely one without proaf the frequency losses due to variation. The figure also shows that
cess variationNloVan, one with process variation and no ReCycle frequencies are not very sensitive to the valug,qiossibly because
(Var), and one with process variation and ReCy&eCycl¢. Fig- many factors end up affecting the critical loop.
ure 10 compares these environments for 17FO4 as wegiaAl Figure 11 compares the three environmentsgfe0.5 as we vary
bars are normalized to the frequencyMatr for ¢=0.1. the useful logic depth per pipeline stage from 17FO4 to 6FO4. All



curves are normalized to the frequencyvaf for 17F04. Since increasing the latency of a pipeline loop hurts IPC, not
The figure shows that, as we decrease the logic depth per stagevery step in frequency increase translates into a performance
process variation hurts the frequency o¥ar pipeline more and increase. Figure 12(b) shows the performance changes for the
more. Indeed, whil&loVars frequency is 19% higher thavar's at pipeline instance of Figure 12(a). If we focus on the curve that
17F04, itis 32% higher at 6FO4. This is because, with fewer gatefncludes all applications, we see that the performance changes little
per critical path for 6FO4, the random component of process variawith more donor stages until we add the 9th stage. At that point,
tion does not average itself as much, creating more unbalance acrogg performance jumps up, even surpassing the performance of the
stages and hurtingar. However, a pipeline with ReCycle is very pipeline without variation{oVar). After that, additional stages im-
resilient to variation, and trackdoVarwell. ReCycle performs rel-  prove performance slowly again. The figure also shows the curve
atively better as the logic depth per pipeline stage decreases. Specifwe had used only SPECint or SPECfp applications to profile the
ically, ReCycle’s frequency is 12% and 24% higher théanm's for IPC changes.
17F0O4 and 6FO4, respectively. This means that ReCycle recovers Examining the data for the 200 pipelines analyzed, we observe
63% and 75% of the losses due to variation for 17FO4 and 6FO4several trends. First, as we add donor stages, performance decreases
respectively. The stage-delay averaging capability of ReCycle ior stays flat for the first few steps and then starts increasing. Sec-
very effective. Overall, ReCycle puts pipelines with variation backond, when each loop has at least one donor stage, we observe a
on the roadmap to scaling. significant performance boost. Third, the performance reaches a
7.3. Adding Donor Stages maximum after a few steps and then starts decreasing. Finally, the

) ] ) ~optimal performance delivered by this technique is always higher
After ReCycle is applied, we can further improve the pipeline ynan that of the no-variation pipeline.

frequ_ency by adding donor stages. Sectior_l 4.2 described the Donor T gain additional insight, we run the Donor algorithm with a
algorithm that we use. In practice, every time that we add a donogjngle application at a time, and measure the performance gains.
stage to a loop, the loop typically ends up with the highest average is a5 if we were tuning the pipeline to run that single applica-
slack per stage in the pipeline and another loop becomes criticaion, Figure 13 shows the number of donor stages required for the
Recall that the Donor algorithm stops when we reach the powepsgline to match the performance of the no-variation pipeline. The
limit. We set the power limit to 30W per processor, which is the figre shows a bar for each application and the geometric mean (last
maximum power dissipated by any of our applications &o&¥ar  par)  For a given application, the bar shows the mean of the 200
processor at the nominal frequency. _ _ pipelines, while the segment shows the range of values for individ-

We have run the Donor algorithm statically (Section 4.2), using5| pipelines. We see that, in the large majority of applications, the
as representative workload the execution of all our applications, ongy;nor algorithm needs to add 8-12 stages to matoWar. This

at a time, and minimizing the impact on the geometric mean of th§;gyre also shows that all applications are amenable to the Donor
IPCs. It can be shown that, on average for the 200 pipelines COMigorithm.

sidered, the Donor algorithm pushes up the frequency of ReCycle-
enhanced pipelines by a further 24%, resulting in an average fre-
quency that is now 36% higher thafar.

As an example, Figure 12(a) shows the frequency changes as we
run the Donor algorithm on one representative pipeline instance.
Each data point corresponds to the addition of one donor stage. We
see that the frequency increases slowly until when we add the 9th
donor stage; at that point, there is large frequency increase. This
corresponds to the point when all the loops in the pipeline have

been given donor stages — while the pipeline has 12 loops, some ¢figyre 13: Number of donor stages needed to match the perfor-
them share a donor stage. After that, frequency increases are agajfhnce of the no-variation pipeline.
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7.4. Overall Performance and Power Evaluation
T Alabpications We now compare the performance\@#r, Novar, ReCycle, Re-
- SPECfp Cycle plus the static application of the Donor algorithReCy-
—— NoVar performance . . .
° =8 cle+StDono), and ReCycle plus the dynamic application of the
e B Donor algorithm ReCycle+DynDondr The latter is a limited dy-
S " namic environment, where we consider each whole application to
g:’ %% be a single phase and, therefore, only rerun the Donor algorithm
29| 0 at the beginning of each application. Moreover, we assume that
g Bg| we know the average IPC impact of adding each donor stage from
s8] @ < f a previous profiling run. Modeling a more sophisticated dynamic
T e environment will likely produce better results.
§— ‘ g— - ‘ Figure 14 shows the performance of the five environments nor-
6 2 4 6 8 10 6 2 4 6 8 10 malized toVar. The bars show the mean of the 200 pipelines, while
Extra Donor stages Extra Donor stages .. . . .
b the segments show the range for individual pipelines. Looking at
@ () average values, we see that ReCycle speeds up the applications

Figure 12: Impact of donor stages on frequency (a) and perfor-py 994 overVar. This is not enough to compensate the effect of
mance (b) in one representative pipeline instance. variation, sinceNoVar is 14% faster thaVar. However, ReCy-



cle+StDonorandReCycle+DynDonomore than recover the losses depending on the logic depth per stage. The higher effectiveness
due to variation, since they are 15% and 16% faster Wemnre- corresponds to pipelines with less logic per stage. This is because,
spectively. as we make the pipeline longer and stages shorter, we have more
unbalance across stages. This results in non-critical loops having
more slack. The bigger the slack is, the more repeaters we can

1.2

g - == = = remove. On the other hand, the valuegdfias little effect. Overall,
oo sincea50% of the power in feedback paths is in repeaters [26],
E < ReCycle can save:7.5-15% of the power in feedback paths.
2c
gL ‘ ‘ ‘ ‘ 8. Related Work
Var ReCycle NoVar ReCycle+ ReCycle+
StDonor  DynDonor ReCycle is an architectural framework for pipelines that com-
Figure 14: Performance of different environments. prehensively performs cycle time stealing after fabrication (either
statically at the manufacturer site or dynamically based on operat-
- == ing conditions) to tolerate process variation. The most related ar-
Eg I eas of research are those of clock skew optimization and adaptive
g, - pipelining.
% S L Clock skew optimizationhas been well studied in the circuits com-
o . munity [4]. It has been applied both at design time and after fabrica-
ST Redycle NoVar Rec‘ycle+ Rec§c|e+ tion to improve circuit tlmlng margins. Fl_shburr_w [18] was the firstto
StDonor  DynDonor propose a linear programming formulation to find the optimal clock
; . ; skews in a circuit.
Figure 15: Dynamic power for constant performance. Several works use clock skewing to address the problem of pro-
2 cess variation. Most of them apply skewing to latch elements in the
S - (ngé clock distribution network to compensate for the effects of process
3 S -8- 9 variationon the clock path delaythemselves (e.g., [41]). For ex-
é ample, Itanium has buffers in the clock network that dynamically
%o deskewvthe signal —i.e., ensure that the clock signal reaches all the
g o parts of the processor with the same skew [14]. On the other hand,
§ o | Liang and Brooks [31] use clock skewing to balance two pipeline
S stages. Specifically, they use cycle time stealing between the regis-
o ter file and execute stages and, with level-sensitive latches, between
R stages in the floating-point unit.
6 8 10 12 14 16 18 The only work that applies cycle time stealing in a systematic
Useful logic per stage(FO4) manner in a pipeline is that of Lest al. [30]. They use it in the
Figure 16: Fraction of repeaters eliminated by ReCycle. context of Razor to balance pipeline error rates. They neither apply

it to process variation nor, more importantly, study the impact of

ReCyche gengra:es tlmlngldslack t:at \lNe kuse to |ncrdegseRthCe: fr vipeline structure such as pipeline depth or loop organization on the
quency. Interestingly, we could use the slack generated by ReCycle, 0.0 o cycle time stealing.

to slr_;we po;vm_er in«;te?d. Specifigallz, W?Hco?ld L;sehqunargic voltag yaptive pipelining techniquesare related to our donor stage op-
scaling to bring the frequency back to thiar level while reducing iz ation, Koppanalilet al. [29] study the effect of dynamically

the operating voltage — saving dynamic power in the process. Simr'nerging pipeline stages to extend the frequency range of dynamic

iIarI_y, We can do the same thing with the slack created by the Dono(/oltage scaling; they do not explicitly describe the implementation
optimization, except that now we want to roll back the frequencydetails of their scheme. Efthymicet al. [16] use asynchronous

until we get the same performance\4s. design techniques to adaptively merge adjacent stages in an em-

. The rr]esultshof (tjhese (_experiments are shdovt;/n ig F(ijgf‘;re 15. Th_Bedded, single-issue processor pipeline. Albonesi [2] proposes
igure shows the dynamic power consumed Dy the different enVI_dynamically-varying functional unit latencies as an adaptive pro-

g)nrlnents of Figure 14 a;o&?ar;gc:g‘ormaryceWe se?vlthat Re- cessing scheme, but he does not discuss the resulting scheduling
Ryée slavgsgn aver;gec |° OD b ynamic g%\(/;er. dg;e;(/)ver, complexities. Recently, Ozdemét al. [34] address the issue of
eCycle+StDonoandReCycle+DynDonosave oan 0, re- scheduling complexity for variable-access L1 cache by using ad-

spectively of thevar dynamic power. These are sizable power re- o na) l0ad-bypass buffers. Finally, concurrently with our work,

ductions. Liang and Brooks [31] propose inserting level-sensitive latches in-

7.5. Eliminating Repeaters side the FP unit that can be enabled after fabrication. If process
Section 4.3.1 proposed using ReCycle to push the slack of nontariation is such that the unit does not meet timing, the latches are

critical loops to their feedback paths and then consuming it by elim&nabled, adding one extra cycle to the FP unit.

inating repeaters there — and saving power in the process. Fi% .

ure 16 shows the percentage of repeaters in feedback paths that Ré- Conclusmns

Cycle eliminates for different values of the useful logic depth per Process variation affects processor pipelines by exacerbating

pipeline stage and. , pipeline unbalance and reducing the attainable frequency. To toler-
The figure shows that ReCycle removes 15-30% of the repeatergye yariation, this paper proposed an architectural framework called



ReCyclehat comprehensively applies cycle time stealing — trans- gpeline_based on circu‘mlevel timin%}n%p tion. liiernational

7 ecula
ymposium on MicroarchitecturBecember 2003.

ferring the timing slack of the faster stages to the slower ones byig) 37p 'Fishburn. Clock skew optimization. IIBEE Trans. on Comput-

skewing the clock arrival times to latching elements after fabrica- 19] grstolggne 39\,(Jlély 19390.(: "R 3 Rab qc. s

; T ; ; . Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos.

tion. As a result, the pipeline can be clocked with a period close tc{ Modeling within-die spatial correlation effects for process-design co-

theaveragestage delay rather than the longest one. optimization. Ininternational Symposium on Quality Electronic De-
We showed that ReCycle increases the frequency of a pipeling, ., Sign March 2005.

. L . 0] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L.
without changing its structure or depth, or the speed of transistors. ~ Alimon. High-performance microprocessor desigournal of Solid-

Such increase is relatively higher the deeper the pipeline is. More- _ State Circuits 33(5):676-686, May 1998. o _
dd ineli t hich are emptv sta é251] A. Hartstein and T. R. Puzak. The optimum pipeline depth for a mi-
Over, we proposed donor pipeline stages, w pty stag croprocessor. linternational Symposium on Computer Architecture
added to the critical loop in the pipeline to “donate” slack to slow May 2002. ) ) )
stages, enabling a higher pipeline frequency. We also used ReC¥#%! Eék:gizlé %"’&)a&%:\if'z'agrl‘?w'tz' The future of wireroceedings of
cle to push the slack of non-critical pipeline loops to their feedbacki23] M. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Keckler, K. I. Farkas, and
paths, which can then be consumed there to reduce wire power or P~ Shivakumar. The optimal logic depth per pipeline stage is 6 to 8 FO4
. . . . inverter delays.International Symposium on Computer Architecture
to improve wire routability. Finally, ReCycle can also be used to May 2002.

salvage chips that would otherwise be rejected due to variationi24] E. Humenay, D. Tarjan, and K. Skadron. Impact of parameter vari-

ind d hold-ti fail ations on multicore chips. IWorkshop on Architectural Support for

induced hold-time failures. ) Gigascale Integration (ASGlune 2006. _ _
On average for a 17FO4 pipeline, ReCycle increased the fref25] {_nte)rnatlonal Technology Roadmap for Semiconductors (2005 Edi-

: ion).
que.nc.:y by 12%, thergby recovering .63% of the frequency IO,SF tqZG P. Kapur, G. Chandra, and K. C. Saraswat. Power estimation in global
variation, and speeding up our applications by 9%. Combining interconnects and its reduction using a novel repeater optimization
; o methodology. IrDesign Automation Conferencgdune 2002.

R’_eC)_/cIe and doonor St?lges increased the freguency of the origin 7] T. Karnik, S. Borkar, and V. De. Probabilistic and variation-tolerant

pipeline by 36% and its performance by 15% on average. Th design: Key to continued Moore’s law. TTAU Workshop2004.

resulting pipeline performed even better than one without procesi8] 1Ré (E)'-zﬁezsele&ggghe Alpha 21264 microprocessolEEE Micro,

variation. Finally, ReCycle also saved 7-15% of the power infeed-[zg] 3. depanal’il, P. 'Ramrakhyani, S. Desai, A. Vaidyanathan, and

back paths for different pipeline depths. E. Rotenberg. A case for dynamic pipeline scaling. Clonference
oanompiIers, Architecture, and Synthesis for Embedded SysBams
tober 2002.
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